Micro/nano structures induced by femtosecond laser to enhance light extraction of GaN-based LEDs.

نویسندگان

  • Tien-Li Chang
  • Zhao-Chi Chen
  • Yeeu-Chang Lee
چکیده

Surface texturing has been widely adopted to enhance the light extraction efficiency of light-emitting diodes (LEDs), and chemical etching is a technique commonly used to produce surface texturing. This study employed femtosecond lasers to apply ITO films directly onto the surface of LEDs to generate periodic micro/nanostructures and roughen the surface without contact or chemical substances. As a result, photons emitted in the active region escape into the free space, due to the scattering effect produced by texturing. This study discovered that light-emitting efficiency increases with surface roughness, and achieved an improvement of 18%. Caution regarding laser fluence was required during laser processing to avoid damaging the LED beneath the ITO film, which could detract from the electrical characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography.

Enhanced light extraction from a GaN-based power chip (PC) of green light-emitting diodes (LEDs) with a rough p-GaN surface using nanoimprint lithography is presented. At a driving current of 350 mA and with a chip size of 1 mm × 1 mm packaged on transistor outline (TO)-cans, the light output power of the green PC LEDs with nano-rough p-GaN surface is enhanced by 48% when compared with the same...

متن کامل

Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.

The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference tim...

متن کامل

Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres

Light-emitting diodes (LEDs) become an attractive alternative to conventional light sources due to high efficiency and long lifetime. However, different material properties between GaN and sapphire cause several problems such as high defect density in GaN, serious wafer bowing, particularly in large-area wafers, and poor light extraction of GaN-based LEDs. Here, we suggest a new growth strategy...

متن کامل

Improvement of photon extraction efficiency of GaN-based LED using micro and nano complex polymer structures

A micro- and nanoscale complex structure made of a high refractive index polymer (n = 2.08) was formed on the ITO electrode layer of an edge-emitting type GaN blue light-emitting diode (LED), in order to improve the photon extraction efficiency by suppressing total internal reflection of photons. The nanoimprint lithography process was used to form the micro- and nanoscale complex structures, u...

متن کامل

Disentangling the effects of nanoscale structural variations on the light emission wavelength of single nano-emitters: InGaN/GaN multiquantum well nano-LEDs for a case study.

The scattering in the light emission wavelength of semiconductor nano-emitters assigned to nanoscale variations in strain, thickness, and composition is critical in current and novel nanotechnologies from highly efficient light sources to photovoltaics. Here, we present a correlated experimental and theoretical study of single nanorod light emitting diodes (nano-LEDs) based on InGaN/GaN multiqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 14  شماره 

صفحات  -

تاریخ انتشار 2012